Data envelopment Analysis with Missing Data: a Multiple Linear Regression Analysis Approach

نویسندگان

  • Ya Chen
  • Yongjun Li
  • Huaqing Wu
  • Liang Liang
چکیده

Data envelopment analysis (DEA) assumes that the data set is precise when performing e±ciency evaluation of peer decision making units (DMUs). The current paper proposes a multiple linear regression analysis (MLRA) approach to estimate missing values if some of the entries in the data set are missing. Its algorithm to derive the estimations is also proposed. In order to verify the credibility of the proposed approach, an example of 30 US commercial banks is applied to case analysis. Using the proposed algorithm, the e±ciencies of all DMUs are obtained. A Friedman test and a Kendall's Tau rank correlation analysis statistically examine the results. Moreover, the e±ciency interval and e±ciency distribution for a DMU are obtained considering random errors of the estimations. After that, an example of public secondary schools serves to illustrate the applications in the end.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target setting in the process of merging and restructuring of decision-making units using multiple objective linear programming

This paper presents a novel approach to achieving the goals of data envelopment analysis in the process of reconstruction and integration of decision-making units by using multiple objective linear programming. In this regard, first, we review inverse data envelopment analysis models for data reconstruction and integration. We present a model with multi-objective linear programming structure in...

متن کامل

DEA with Missing Data: An Interval Data Assignment Approach

In the classical data envelopment analysis (DEA) models, inputs and outputs are assumed as known variables, and these models cannot deal with unknown amounts of variables directly. In recent years, there are few researches on handling missing data. This paper suggests a new interval based approach to apply missing data, which is the modified version of Kousmanen (2009) approach. First, the prop...

متن کامل

An Integrated DEA and Data Mining Approach for Performance Assessment

This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...

متن کامل

Presenting a New Model for Bank’s Supply Chain Performance Evaluating with DEA Solution Approach

Data Envelopment Analysis (DEA) is a method for measuring the efficiency of peer decision making units (DMUs) with multiple inputs and outputs. The traditional DEA treats decision making units under evaluation as black boxes and calculates their efficiencies with first inputs and last outputs. This carries the notion of missing some intermediate measures in the process of changing the inputs to...

متن کامل

A Data Envelopment Analysis Model with Triangular Intuitionistic Fuzzy Numbers

DEA (Data Envelopment Analysis) is a technique for evaluating the relative effectiveness of decision-making units (DMU) with multiple inputs and outputs data based on non-parametric modeling using mathematical programming (including linear programming, multi-parameter programming, stochastic programming, etc.). The classical DEA methods are developed to handle the information in the form of cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Information Technology and Decision Making

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2014